Fuzzy Relational Distance for Large-Scale Object Recognition
نویسندگان
چکیده
This paper presents a new similarity measure for object recognition from large libraries of line-patterns. The measure draws its inspiration from both the Hausdor distance and a recently reported Bayesian consistency measure that has been sucessfully used for graphbased correspondence matching. The measure uses robust error-kernels to gauge the similarity of pairwise attribute relations de ned on the edges of nearest neighbour graphs. We use the similarity measure in a recognition experiment which involves a library of over 1000 line-patterns. A sensitivity study reveals that the method is capable of delivering a recognition accuracy of 98%. A comparative study reveals that the method is most e ective when a Gaussian kernel or Huber's robust kernel is used to weight the attribute relations. Moreover, the method consistently outperforms Rucklidge's median Hausdor distance.
منابع مشابه
A NEURO-FUZZY GRAPHIC OBJECT CLASSIFIER WITH MODIFIED DISTANCE MEASURE ESTIMATOR
The paper analyses issues leading to errors in graphic object classifiers. Thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andNeuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and...
متن کاملA Fuzzy Decision-Making Methodology for Risk Response Planning in Large-Scale Projects
Risk response planning is one of the main phases in the project risk management and has major impacts on the success of a large-scale project. Since projects are unique, and risks are dynamic through the life of the projects, it is necessary to formulate responses of the important risks. The conventional approaches tend to be less effective in dealing with the impreciseness of risk response p...
متن کاملShape recognition using fuzzy string-matching technique
Object recognition is a very important task in industrial applications. Attributed string matching is a well-known technique for pattern matching. The present paper proposes a fuzzy string-matching approach for two-dimensional object recognition. The fuzzy numbers are used to represent the edit costs. Therefore, the edit distances are also presented as fuzzy numbers. The attributed string-match...
متن کاملشناسایی نوع و مدل وسیله نقلیه با استفاده از مجموعه بخشهای متمایزکننده
In fine-grained recognition, the main category of object is well known and the goal is to determine the subcategory or fine-grained category. Vehicle make and model recognition (VMMR) is a fine-grained classification problem. It includes several challenges like the large number of classes, substantial inner-class and small inter-class distance. VMMR can be utilized when license plate numbers ca...
متن کاملObject Recognition from Large
This paper presents a new similarity measure for object recognition from large libraries of line-patterns. The measure commences from a Bayesian consistency criterion which as been developed for locating correspondence matches between attributed relational graphs using iterative relaxation operations. The aim in this paper is to simplify the consistency measure so that it may used in a non-iter...
متن کامل